Сушка осадка на иловых площадках для современных крупных очистных станций не всегда оказывается возможной, так как требует больших площадей. С иловых площадок распространяется запах, кроме того, они содействуют выплоду мух. Поэтому для крупных станций необходимо применять более совершенные способы обезвоживания осадка, к числу которых прежде всего относится механическое удаление влаги.
Для механического обезвоживания осадка могут быть применены вакуум-фильтрация, центрифугирование и фильтрпрессование.
Вакуум-фильтрация. Из обезвоживающих аппаратов наибольшее распространение получили барабанные вакуум-фильтры (рис. 4.62), представляющие собой горизонтально расположен-ный барабан, боковая поверхность которого име- ис 1 ^хема вак} умет перфорированную обечайку и обтянута сверху
Ф
„ ,_________ 1______ „________________ /-.-____________________________ / — вращающийся_______ ролик,
ильтровальнои тканью. Обычно применяют 2— нож; з — натяжной )о-
КапрОНОВЫе ТКаНИ раЗНЫХ арТИКуЛОВ. лик; «-направляющий ро
Внутренняя полость барабана продольными радиальными перегородками делится на несколько изолированных секторов — самостоятельных камер.
Барабан вращается на валу, совершая один оборот за 4—7 мин. На конце вала установлена распределительная головка фильтра, соединенная с вакуум-насосом и линией сжатого воздуха.
Примерно на 7з диаметра барабан погружен в корыто, куда поступает подлежащий обезвоживанию осадок. При вращении барабана часть секций погружается в фильтруемый осадок. Через распределительную головку эти секции подключаются к линии вакуума, значение которого зависит от вида обезвоживаемого осадка и составляет 0Д>4—¦
297
0,067 МПа, Под действием вакуума осадок налипает на фильтровальную ткань. В этих же камерах (при выходе их из корыта), а также под действием вакуума происходит отделение воды от твердого вещества, т. е. собственно процесс обезвоживания осадка. Фильтрат проходит через фильтровальную ткань внутрь секции барабана, откуда отводится в ресивер для отделения от воздуха. Затем фильтрат перекачивается на биологическую очистку, так как содержит 300—600 мг/л взвешенных веществ и БПК его достигает 400—600 мг/л. Камеры соединяются с линией сжатого воздуха, который отделяет обезвоженный осадок, налипший на фильтровальную ткань. Обезвоженный осадок влажностью 70— 80%, снятый с поверхности барабана специальным ножом, поступает на
Рис. 4.63. Схема механического обезвоживания осадка
/—метантенк; 2—сборный резервуар; 3—плунжерный насос; 4 — подача воды; 5—подача сжатого воздуха; 6 — промывка осадка; 7 — уплотнитель; 8 — резервуар уплотненного осадка; 9 — подача коагулянта; 10—отделение коагулирования; //—вакуум-фильтр; 12— транспортер; 13 — подача
в отделение термической сушки
транспортер, откуда его направляют на последующую сушку или к месту использования.
Таким образом, за один оборот барабана происходит непрерывное автоматическое чередование процессов образования кека, его обезвоживания, подсушки и снятия с поверхности барабана. Пропускная способность вакуум-фильтров в значительной мере зависит от удельного сопротивления осадка. По данным АКХ, удельное сопротивление осадков колеблется в широких пределах: для смеси осадка и ила, сброженной в мезофильных условиях, — от 520- 10ю до 9140- 10ш см/г, для термофильно сброженной смеси — от 3953-10ю до 9500• 1010 см/г. Считается, что устойчивая работа вакуум-фильтров может быть обеспечена, если удельное сопротивление смеси не превышает 60-1010 см/г.
Для снижения удельного сопротивления осадок перед обезвоживанием предварительно обрабатывают. Для сброженных осадков обычно применяют промывку с последующим уплотнением и обработку химическими реагентами. Осадок и промывная вода перемешиваются в течение 6—10 мин сжатым воздухом, подаваемым в смеситель из расчета 0,5 м3 на 1 м3 смеси. Далее смесь поступает в отстойник-уплотнитель, где находится 12—18 ч. Отстоявшаяся вода с концентрацией взвешенных веществ 500—1500 мг/л направляется в первичные отстойники, а уплотненный осадок — на дальнейшую обработку. Промывка и уплотнение сброженной смеси осадка и активного ила позволяет снизить ее влажность с 97—97,5% приблизительно до 95%.
Промывкой, кроме того, достигается удаление из осадков части коллоидных веществ и самой мелкой фракции, затрудняющей фильтрацию и засоряющей ткань фильтра, а также снижение щелочности осадка, что позволяет несколько уменьшить расход химических реагентов.
К промытому и уплотненному осадку последовательно добавляют реагенты: 10%-ный раствор РеС13 и Са(ОН)2 в виде 10%-ного известкового молока. В присутствии Са(ОН)2 гидролиз хлорида железа идет до конца и образуются хлопья Ре(ОН)3- Частицы осадка объединяются хлопьями гидроксида железа в достаточно крупные агрегаты. Инертная часть извести играет роль присадочного материала.
В результате такой обработки удельное сопротивление осадка значительно снижается и осадок легче отдает воду.
Дозы реагентов рассчитывают в процентах на сухое вещество в зависимости от характера осадка, подлежащего обезвоживанию. Реагенты вводятся непосредственно перед подачей осадка на вакуум-фильтрацию, так как хранение обработанного осадка, а также перекачивание насосами ухудшают его водоотдачу.
В последние годы получил распространение способ механического обезвоживания сырого осадка без сбраживания его в метантенках. Этот
способ особенно целесообразен при ограниченной территории очистных сооружений.
Сырой осадок из первичных отстойников подается насосами в резервуар-регулятор расхода осадка, откуда в смеси с химическими реагентами поступает на вакуум-фильтр.
Благодаря лучшей водоотдаче сырого осадка по сравнению со сброженным предварительная его обработка ограничивается только последовательной добавкой реагентов.
При обезвоживании сырого осадка на барабанных вакуум-фильтрах происходит быстрое заиливание фильтровальной ткани, пропускная
способность которой зачастую не поддается восстановлению даже с увеличением числа обычных промывок водой и ингибированной соляной кислотой (кислота с добавкой ингибитора ПБ для предотвращения коррозии металла). Поэтому вакуум-фильтры должны иметь более эффективные приспособления для восстановления фильтрующей способности ткани. Фильтровальная ткань при вращении барабана сходит на систему роликов 2, 4 и 9. При прохождении ее через разгрузочный ролик кек отделяется от ткани и снимается ножом. При этом происходит одновременная отдувка кека и очистка ткани сжатым воздухом, подающимся в разгрузочный (полый) ролик. При движении ткани от полого ролика к натяжному и возвратному роликам происходит промывка ее с обеих сторон водой и ингибированной соляной кислотой, подающейся под давлением из насадок. Натяжной и возвратный ролики самоустанавливающиеся, благодаря чему ткань на барабане всегда натянута должным образом.
Расчет вакуум-фильтрационных установок включает расчет сооружений по промывке и уплотнению осадка, расчет реагентного хозяйства, определение числа барабанных вакуум-фильтров, необходимых для обезвоживания имеющегося осадка.
Однако им присущ ряд недостатков,
важнейшим из которых является сложность предварительной подготовки осадка к обезвоживанию. Большой расход и высокая стоимость химических реагентов, трудности в их приготовлении и дозировании, коррозия трубопроводов и оборудования при применении хлорного железа — все это требует поисков более простых и эффективных методов подготовки осадков к обезвоживанию. К числу таких методов относятся термические приемы воздействия на физико-химические свойства осадка.
В ряде стран (Англия, Швейцария, ФРГ) получила распространение тепловая обработка осадка перед обезвоживанием.
Сущность метода состоит в прогревании осадков при температуре 140—200 °С и соответствующем давлении.
Схема тепловой обработки осадка представлена на рис. 4.66. Осадок после нагревания в теплообменнике подается в реактор, где прогревается при определенной температуре в течение заданного времени. Обработанный осадок возвращается в теплообменник, где отдает свое тепло поступающему осадку и охлаждается до 30—40 °С. После отстаивания в уплотнителе осадок без какой-либо дополнительной обработки обезвоживается на вакуум-фильтре.
В МИСИ им. В. В. Куйбышева проведены исследования метода тепловой обработки для определения технологических параметров процесса. Установлено, что температурный режим и продолжительность обработки зависят от характера обрабатываемого осадка. В частности, для уплотненного активного ила необходимо прогревание его при температуре 185—196 °С в течение 60—75 мин. При тепловой обработке часть органических веществ разрушается и продукты распада переходят в газ и в иловую воду. Вследствие изменения физико-химических свойств осадков резко увеличивается их способность к влагоотдаче. Только гравитационное уплотнение позволяет удалить до 75% первоначально содержавшейся в осадке воды. Одним из существенных достоинств этого метода является полная стерильность обработанного осадка. Кроме того, при обезвоживании таких осадков на вакуум-фильтрах образуется кек более низкой влажности (55—70%), что позволяет исключить термическую сушку осадка. Осадок после обезвоживания может складироваться на открытых площадках.
К числу недостатков метода относятся сложность конструктивного оформления и высокая концентрация органических
веществ в иловой воде, которую необходимо поэтому направлять на биологическую очистку. Однако значительное упрощение схемы обработки осадков (возможность исключения метантенков, отказ от промывки и реагентной обработки осадка) позволяет считать этот метод весьма перспективным.
|
|